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Abstract: Volterra models are very useful for representing nonlinear systems with vanishing memory. The main
drawback of these models is their huge number of parameters to be estimated. In this paper, we present a new
class of Volterra models, called Volterra-Parafac models, with a reduced parametric complexity, by considering
Volterra kernels of order (p > 2) as symmetric tensors and by using a parallel factor (PARAFAC) decomposition.
This paper is concerned with the problem of identification of third-order Volterra-PARAFAC models. Two types
of algorithms are proposed for estimating the parameters of these models when input-output signals and kernel
coefficients are real valued. The first is called Levenberg-Marquardt algorithm and the second is the Partial Update
LMS algorithms. Some simulation results illustrate the proposed identification methods.
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1 Introduction

Volterra models represent a nonlinear extension of
the popular finite impulse response (FIR) linear
model, with guaranteed stability in the boundedin-
put bounded-output sense. Moreover, they are com-
mutly used because of their property of linearity with
respect to parameters, the kernels coefficients. The
main drawback of Volterra models consists in their
parametric complexity that imply to estimate a huge
number of parameters. This number increases with
the system nonlinearity order and memory. This mod-
els are now widely used in various application areas
like nonlinear acoustic echo cancellation [3], speech
modeling [1], loudspeaker linearization [2], nonlin-
ear communication channel identification and equal-
ization [5, 4], and many others.

There are many approaches to reduce parametric
complexity in Volterra models. One approach is to
consider the block-structured nonlinear models con-
stituted by a cascade of linear dynamic and nonlin-
ear static subsystems. These models are character-
ized by a smaller number of parameters and they are
nonlinear with respect to their parameters. Another
approach, consists in expanding the Volterra kernels
onto orthonormal basis functions (OBFs).

In the present paper, by considering Volterra
kernels as symmetric tensors, a parallel factor
(PARAFAC) decomposition is used to reduce param-
eter complexity and derive the Volterra-PARAFAC

model. Then, adaptive algorithms such as Levenberg-
Marquardt and Partial Update Least Mean Squares al-
gorithms (PU-LMS) are proposed for estimating the
parameters of such a model and then compared with
existing algorithms.

The rest of this paper is organized as fol-
lows. Section 2 describes the Volterra model
and then we apply the PARAFAC decomposi-
tion to symmetric Volterra kernels to construct the
Volterra-PARAFAC model. In Section3, we pro-
pose a Levenberg-Marquardt method for identifying
Volterra-PARAFAC models. In Section4, we pro-
pose two types of PU-LMS algorithm for identifying
Volterra-PARAFAC models. The proposed identifica-
tion methods are illustrated by means of some simula-
tion results in Section5, before concluding the paper
in Section6.

2 Volterra-PARAFAC models

A pth-order Volterra model for a causal, stable, finite
memory, time-invariant, SISO system is described by
the following input-output relationship:

y(k) = h0 +

P
∑

p=1

yp(k) (1)
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with:

yp(k) =
M
∑

m1,··· ,mp=1

hp(m1, · · · ,mp)

p
∏

i=1

u(k −mi)

whereu(k) and y(k) denote respectively the input
and output signals,P is the nonlinearity degree of the
Volterra model,M is the memory of thepth-order ho-
mogeneous termyp(k) andhp(m1, · · · ,mp) is a coef-
ficient of thepth-order kernel. This coefficient can be
viewed as an element of a tensorHp ∈ KM×M×···×M ,
with K = R or C depending on whether the kernel co-
efficients are real-valued or complex-valued.

Any symmetric tensorH ∈ KM×M×···×M with
rang R can be decomposed using the symmetric
PARAFAC decomposition [6]:

h(m1, · · · ,mp) =

R
∑

r=1

P
∏

p=1

a(p)mp,r, mp = 1, · · · ,M

wherea(p)mp,r is an element of the matrix factorA(p) ∈

KM×R.
Replacing the Volterra kernel of thepth-order ho-

mogeneous term in (1) by its symmetric Parafac de-
composition, we obtain the following input-output re-
lationship :

y(k)=h0 +
P
∑

p=1

rp
∑

r=1

p
∏

i=1

(

M
∑

mi=0

a(p)mi,r
u(k −mi)

)

(2)

Let define the linear input regression vector
uT (k) = [u(k), · · · , u(k − M + 1)], expression (2)
becomes:

y(k)=h0 +
P
∑

p=1

rp
∑

r=1

(

uT (k)A(p)
.r

)p

(3)

Let us consider a third-order Volterra-PARAFAC
model with memoryM , rangR and real-valued pa-
rameters. The input-output relationship is given by:

y(k)=h0 +
3
∑

p=1

R
∑

r=1

(

uT (k)A(p)
.r

)p

(4)

Defining following vectors:

θT = [θ(0) θ(1)T θ(2)T θ(3)T ] (5)

with:

θ(0)=h0

θ(1)=A
(1)
.1 = [h1(1) h1(2) · · · h1(M)]T ∈ RM×1

θ(p)=vec(A(p)) ∈ RMR×1, p = 2, 3

The input-output relation (4) can be rewritten as:

y(k) = f(k,θ) (6)

The measured output signal of nonlinear system to be
identified can be deduced as:

s(k) = f(k,θ) + ν(k) (7)

whereν(k) is a white noise sequence with covariance
σ2.

3 Levenberg-Marquardt estimation
algorithm for Volterra-PARAFAC
models

3.1 Levenberg-Marquardt algorithm
The Levenberg-Marquardt (LM) method is a standard
technique used to solve nonlinear least squares prob-
lems. The nonlinear least squares methods involve
an iterative improvement of parameters values in or-
der to minimize the sum-squared errors between func-
tion and measured data. With the LM method, it is
not necessary to calculate the second derivatives to
find estimated parameters. However, at each itera-
tion, the algorithm solves a set of linear equations to
calculate the gradient, which is easier and faster than
other optimization techniques, in terms of the calcu-
lations. For a given iteration, all the unknowns are
estimated jointly, contrary to the ALS (Alternating
Least Square) which updates the components alter-
nately [10]. This algorithm has been proposed par-
ticularly in [11] for fitting a PARAFAC model.

Given a set of data points (xi, yi) related by the
functionf such thatyi = f(xi,a), the LM method
find the parametersa that minimize the sum-squared
error:

S(a)=
1

2

m
∑

i=1

ei(a)
2

=
1

2

m
∑

i=1

(yi − f(xi,a))
2 (8)

Given an estimationâ(k) of a at iteration k,
â(k+1) is obtained byâ(k+1) = â(k) + ∆a, where
∆a mast be calculated such to ensure a direction of
steepest descent forS.

Let’s defineJ the jacobian matrix of the func-
tion f(xi,a) with respect to the parameters vectora.
The update equation of∆a using Gauss-Newton (GN)
method is obtained by solving the following normal
equations:

JTJ∆a=JTe(a) (9)
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A restriction on this method is the requirement
thatJ must have full rank. GN is notable for its fast
convergence close to the solution, but its efficiency de-
pends on having an accurate initial guess. To ensure
the global convergence of GN method and guaran-
tee thatJTJ remains positive definite, Levenberg pro-
posed to replace theJTJ matrix by JTJ + λI where
λ > 0 is the damping factor. LM is also especially
useful whenJ is rank deficient, in which case GN
would not be effective. The method is then described
by:

(

JTJ+ λI
)

∆a=JTe(a) (10)

where small values ofλ result in a Gauss-Newton up-
date and large values ofλ result in a gradient descent
update. The parameterλ is initialized to be large. If
an iteration happens to result in a worse approxima-
tion, λ is increased. As the solution approaches the
minimum, λ is decreased, the Levenberg-Marquardt
method approaches the Gauss-Newton method, and
the solution typically converges rapidly to the local
minimum [12].

LM’disadvantage algorithm is that if the value of
damping factorλ is large, invertingJTJ is not used
at all. Marquardt’s contribution is to replaced the
identity matrix, I, with the diagonal matrix consist-
ing of the diagonal elements ofJTJ, resulting in the
Levenberg-Marquardt algorithm:

(

JTJ+ λdiag(JTJ)
)

∆a=JT e(a) (11)

The estimated parameter update equation of the LM
algorithm is:

â(k+1) = â(k) +
(

JTJ+ λdiag(JTJ)
)−1

JTe(â(k))

where J is the Jacobian of the nonlinear function
f(xi,a) with respect to the parametera calculated at
pointa = â(k) ande(â(k)) = y − f(x, â(k)).

3.2 Levenberg-Marquardt algorithm for
identifying Volterra-PARAFAC models

Whereas the Volterra-PARAFAC model is nonlinear
in its parameters, the iterative algorithms can be used
to estimate PARAFAC coefficients. Let consider the
LM algorithm that minimize the following function:

E(k) =
1

2
e(k)2 =

1

2
(s(k)− f(k,θ))2 (12)

whereθ, f(k,θ) ands(k) are defined in (5), (6) et (7)
respectively.

Table 1: LM algorithm for identifying the Volterra-
PARAFAC model

1. k = 0, Randomly initializeθ̂(0),

2. k = k + 1,

3. The estimated parameter update equations of the LM algo-
rithm are :

e(k)=s(k)− f(k, θ̂(k − 1))

θ̂
(p)(k)=θ̂

(p)(k − 1) +
[

Ĵ
(p)T

k Ĵ
(p)
k + λpdiag

(

Ĵ
(p)T

k Ĵ
(p)
k

)]

−1

×Ĵ
(p)T

k e(k).

4. Return to Step (2) untilk = K, whereK is the number of
input-output data to be processed.

The estimated parameter update equations of the
LM algorithm, where the input-output signals and ker-
nel coefficients are real valued, is given by:

θ̂(p)(k)=θ̂(p)(k − 1) +
[

Ĵ
(p)T

k Ĵ
(p)
k + λpdiag(Ĵ(p)T

k Ĵ
(p)
k )
]

−1

×Ĵ
(p)T

k e(k) (13)

whereλp is non-negative damping factor,Ĵ(p)
k define

the Jacobian matrix of nonlinear functionf(k,θ) with
respect to the parameters vectorθ calculated at the
pointθ = θ̂(p)(k − 1).

By derivingf(k,θ), we obtain:

∂f(k,θ)

∂amr

=











1, if p = 0
u(k −m), if p = 1

p u(k −m)
(

uT (k)A
(p)
.r

)p−1
,if p ≥ 2

(14)

Which give :

J
(p)
k =











1, if p = 0
uT (k), if p = 1

p
(

uT (k)A(p)
)•(p−1)

⊗ uT
p (k),if p ≥ 2

(15)

where• and⊗ denote, respectively, Hadamard and
Kronecker products. The estimated parameter up-
date equations of the LM algorithm for Volterra-
PARAFAC models identification are then summarized
in table 1.
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4 Partial update LMS estimation al-
gorithms for Volterra-PARAFAC
models

4.1 Partial Update LMS (PU-LMS) algo-
rithms

The least mean-squares (LMS) algorithm is a popu-
lar algorithm for updating of weights in adaptive fil-
ter. Although there exist algorithms with faster con-
vergence rates like RLS, LMS is popular because of
its ease of implementation and low computational re-
sources and memory [15].

They have been employed in various areas, in-
cluding interference cancellation, echo cancellation,
space time modulation and coding, signal copy in
surveillance and wireless communications [16].

Two types of partial update LMS algorithms are
in use in the literature and have been described in [14].
”Periodic LMS algorithm” and ”Sequential LMS al-
gorithm”. The Periodic PU-LMS algorithm updates
all the filter coefficients everyP th iteration instead of
every iteration. The Sequential PU-LMS algorithm
updates only a fraction of coefficients every iteration.

4.1.1 Sequential Partial Update LMS algorithms
(SPU-LMS)

Let considerx(k) the linear input regression vector
andw(k) the vector containing coefficients of adap-
tive filter of odd lengthL, for the instantk. Define:

w(k)=[w1 w2 · · · wL]
T (16)

x(k)=[x1 x2 · · · xL]
T (17)

Assume that the filter lengthL is a multiple of
Q. Let define the index setS = 1, 2, · · · , L. Let
S1, S2, · · · , SQ a Q mutually exclusive subsets of
equal sizez (z = L

Q
) of S. The SPU-LMS algorithm

is described as follows. At a given iteration,k, one of
the setsSq, q = 1, · · · , Q, is chosen and there isz co-
efficients to be updated. Without loss of generality, it
can be assumed that at iterationk, the setSq is chosen
for update, such asq = (kmodQ) + 1. Therefore,
the equation of SPU-LMS algorithm is described by
[14, 15]:

wj(k + 1) =

{

wj(k) + µe(k)xj(k) if j ∈ Sq

wj(k) else
(18)

wheree(k) = d(k) − w(k)Tx(k) is the error signal
at iterationk andmod denotes the modulo operator.

DefineIq is the identity matrix of dimensionL
such as thejth row is equal to zero ifj 6∈ Sq. In that

case,Iqxk will have L
Q

non-zero entries ofxk. More-
over, if the subsetSq is chosen at iterationk, that mean
the weights with their indices inSq will be chosen for
update at iterationk. Then, the update equation of
SPU-LMS algorithm can be written as :

w(k + 1)=w(k) + µe(k)Iqx(k). (19)

Iq is the coefficient selection matrix and is given by:

Iq =













i1 0 . . . 0

0 i2
. . . 0

...
. .. . . .

...
0 . . . 0 iL













(20)

whereij =

{

1 if j ∈ Sq such asq = (kmodQ) + 1
0 else

4.1.2 Periodic Partial LMS algorithm (PPU-
LMS)

The update equation of PPU-LMS algorithm is given
by [14, 15]:

wj(k + 1) =







wj(k) + µe(l)xj(l) if (k + j)modP = 0
andl = P ⌊k/P ⌋

wj(k) else
(21)

where⌊.⌋ denotes the truncation operation. The PPU-
LMS algorithm consist in updating all the coefficients
at periodic intervals (everyP th iteration). The update
equation (21) is mathematically equivalent to the fol-
lowing coefficient vector update:

w(k + P )=w(k) + µe(k)x(k). (22)

Table 2 resume the different update equations, at
iterationk, of PU-LMS algorithms for a FIR filter of
lengthL with impulse response of filter coefficients
w(k) = [w1 w2 · · · wL]

T . x(k) = [x1 x2 · · · xL]
T

denotes the linear regression vector,e(k) = d(k) −
w(k)Tx(k) is the error signal andd(k) represents the
desired response.

Table 3 shows the computational complexity of
the partial update FIR filters. These table present
number of multiplications, divisions, additions, and
comparisons in each iteration for filter vector update
equation. As we can see, for partial update FIR filters,
the computational complexity is lower than ordinary
FIR filters.

4.2 SPU-LMS and PPU-LMS algorithms for
identifying Volterra-PARAFAC model

Whereas the Volterra-PARAFAC model is nonlinear
in its parameters, the adaptive algorithms can be used
to estimate PARAFAC coefficients [8].
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Table 2: Update equations of PU-LMS algorithms.

Algorithms Update equations

LMS w(k + 1) = w(k) + µe(k)x(k)

SPU-LMS
w(k + 1) = w(k) + µe(k)Iqx(k),

whereIq is a matrix defined in (20)

PPU-LMS
w(k + P ) = w(k) + µe(k)x(k),

whereP is the period

Table 3: Computational complexity of ordinary and
partial update LMS algorithms.

Algorithms × +

LMS 2L+ 1 2L

SPU-LMS L+Q+ 1 L+Q

PPU-LMS L+ (L+ 1)/P L+ L/P

The LMS algorithm (also called stochastic gra-
dient algorithm) has been proposed in [9, 7] for es-
timating the parameters of thepth-order Volterra-
PARAFAC model, then its normalized version called
NLMS algorithm.

The gradient of the nonlinear functionf(k,θ),
presented in (6), can be calculated by means of the
following formulae [6, 7]:

ϕT (k) = [1 ϕT
1 ϕT

2 ϕT
3 ] (23)

with:
ϕ1 = u(k)

and:

ϕT
p (k) = p

[

αp−1
p,1 (k) · · · αp−1

p,R (k)
]

⊗ uT (k)

where:

αp,r(k) =
(

uT (k)Â(p)
.r (k − 1)

)

, r = 1, · · · , R, p = 2, 3,

The estimated parameter update equations of the
LMS algorithm, where the input-output signals and
kernel coefficients are real valued, is given by:

θ̂(p)(k)=θ̂(p)(k − 1) + µpϕ̂p(k)e(k) (24)

whereµp is the step size that controls the convergence
speed and the steady-state properties of the algorithm.
Then, by using equation (19), we obtain the update
equation of SPU-LMS for Volterra-PARAFAC model
[13]:

θ̂(p)(k)=θ̂(p)(k − 1) + µpI
(p)
q ϕ̂p(k)e(k) (25)

Table 4: SPU-LMS algorithm for identifying the
Volterra-PARAFAC model

1. k = 0, Randomly initializeθ̂(0),

2. k = k + 1,

3. The estimated parameter update equations of the SPU-LMS
algorithm are :

e(k)=s(k)− f(k, θ̂(k − 1))

θ̂
(p)(k)=θ̂

(p)(k − 1) + µpI
(p)
q ϕ̂p(k)e(k)

4. Return to Step (2) untilk = K, whereK is the number of
input-output data to be processed.

with I
(p)
q is the coefficient selection matrix defined in

(20) and the length of vector̂θ(p) is a multiple ofQp.
For each iterationk, only the coefficients that belong
to the chosen set are updated.

The estimated parameter update equations of the
SPU-LMS algorithm for Volterra-PARAFAC model
identification are then summarized in table 3.
For p = 0, we haveQ0 = 1 and the update equation
(25) becomes:

θ̂(0)(k)=θ̂(0)(k − 1) + µ0e(k)

For p = 1, we haveM = αQ1 such asα is posi-
tive constant, the update equation (25) becomes in this
case:

θ̂(1)(k)=θ̂(1)(k − 1) + µ1I
(1)
q u(k)e(k)

and

I(1)
q =













i1 0 . . . 0

0 i2
. . . 0

...
. . .

. . .
...

0 . . . 0 iM













∈ RM×M

whereij =

{

1 if j ∈ Sq such asq = (kmodQ1) + 1
0 else

Forp ≥ 2, we haveMR = αQp such asα is positive
constant, the update equation (25) becomes then:

θ̂(p)(k)=θ̂(p)(k − 1) + µpI
(p)
q ϕ̂p(k)e(k)

and

I(p)
q =













i1 0 . . . 0

0 i2
. . . 0

...
. . .

. . .
...

0 . . . 0 iMR













∈ RMR×MR
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Table 5: PPU-LMS algorithm for identifying the
Volterra-PARAFAC model

1. k = 0, Randomly initializeθ̂(0),

2. k = k + 1,

3. The estimated parameter update equations of the PPU-LMS
algorithm are :

e(k)=s(k)− f(k, θ̂(k − 1))

θ̂
(p)(k)=θ̂

(p)(k − P ) + µpϕ̂p(k)e(k)

4. Return to Step (2) untilk = K, whereK is the number of
input-output data to be processed.

whereij =

{

1 if j ∈ Sq such asq = (kmodQp) + 1
0 else

By using equation (22), we obtain the update
equation of PPU-LMS for Volterra-PARAFAC model
[13]:

θ̂(p)(k)=θ̂(p)(k − P ) + µpϕ̂p(k)e(k) (26)

PPU-LMS algorithm updates all coefficients of vector
θ̂(p) everyP iteration instead of every iteration.

The estimated parameter update equations of the
PPU-LMS algorithm for Volterra-PARAFAC model
identification are then summarized in table 4.

5 Simulation Results
In this section, we present some Monte Carlo simu-
lation results for illustrating performance of the pro-
posed methods for parametric estimation of a third-
order Volterra-Parafac model.Nm = 10 Volterra
models were simulated by drawing the coefficients of
the linear kernel, the quadratic and of the cubic ker-
nel Parafac factors from a Gaussian distribution, with
M = 10 andR = 3. Moreover,Nb = 10 additive
white Gaussian noisesν (defined in (7)) with zero-
mean were added to each model output with fixed
SNR (Signal-to-Noise Ratio). The noise sequenceν
can be written asν = σe, wheree = [e1 · · · eN ]T is a
white gaussian noise which the mean is equal to zero
and the variance is equal to1. The value ofσ is cho-
sen such that the SNR is equal to the one desired. The
SNR equation is then given by :

SNRfixed=20 log

(

‖y‖2
‖ν‖2

)

= 20 log

(

‖y‖2
σ‖e‖2

)

(27)

Determination of the σ value: For the white gaus-
sian noisee, we consider the following expression of

SNR :

SNR=20 log

(

‖y‖2
‖e‖2

)

(28)

From (27) and (28), we get:

SNRfixed=SNR− 20 log(σ)

20 log(σ)=SNR− SNRfixed

σ=10

SNR− SNRfixed

20

Performances are evaluated by means of Normalized
Mean Square Error (NMSE) on the output signal at
timek :

NMSEs,k=10 log

(

1

NmNb

Nm
∑

m=1

Nb
∑

b=1

‖ŝk,m,b − sk,m‖2F
‖sk,m‖2F

)

wheresk,m = [sk−τ+1,m · · · sk,m]
T denotes the out-

put vector associated with themème simulated model
and ŝk,m,b = [ŝk−τ+1,m,b · · · ŝk,m,b]

T denotes the cor-
responding vector of reconstructed outputs calculated
in sliding window of lengthτ = 2000, by using the
estimated Volterra-PARAFAC model for thebth con-
verged experiment.
The input sequence has been a6-RMS (six-Random
Multilevel Sequence), whose values were uniformly
drawn from the alphabet{±1,±2/3,±1/3}.
The damping factor values of the LM algorithm and
the adaptation step sizes of the PU-LMS algorithms
are given in table 6. We have to notice that the per-
formances of the LM and the PU-LMS algorithms are
strongly dependent on the choice of this factors.

Table 6: Damping factor values

p 1 2 3

λp 2 · 10−3 2 · 10−5 2 · 10−6

µp 1.2 · 10−5 4.5 · 10−6 1.4 · 10−7

In subsection 5.1, given noisy input-output measure-
ments, we evaluate the parameter estimation algo-
rithm derived in Section 3. Then, we compare it with
the EKF (Extended Kalman Filter;) algorithm devel-
oped in [6].
In subsection 5.2, given noisy input-output measure-
ments, we evaluate the parameter estimation algo-
rithms derived in Section 4. Then, we compare it with
the standard LMS algorithm developed in [7].
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5.1 Parameter estimation using the LM algo-
r ithm

Figure 1 shows the NMSEs versus the iterations for
different values of SNR. Figure 2 presents the NMSEs

versus SNR for different values of approximation
ranksR2 = R3 = R = 2, 3, 4.

From these simulation results, we can conclude that,
as expected, the NMSEs decreases when the SNR in-
creases. Moreover, it can be observed that the NMSEs

increase when the rank is underestimated, and that is
the more so as the SNR increases. However, when the
rank is overestimated, NMSEs does not change.

Figure 3 shows the NMSEs versus the iterations, with
SNR=40 dB, for the proposed LM algorithm and the
EKF algorithm. Although the LM method gives more
precise estimation in terms of NMSEs, the EKF result
aconvergence rate3 times faster than the LM.
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rithms
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Figure 4: NMSEs vs iterations for differentQp value
of SPU-LMS algorithm

5.2 Parameter estimation using the PU-LMS
algorithms

Figures 4, 5 show the NMSEs versus the iterations
for the adaptive SPU-LMS and PPU-LMS algorithms,
for different value ofQp, p = 1, 2, 3 for SPU-LMS
algorithm and different value of period for PPU-LMS
algorithm, in the case of SNR=40 dB.
Figures 6, 7 show the NMSEs versus the iterations,
with SNR=40 dB and SNR respectively, for the three
adaptive algorithms (ordinary LMS, SPU-LMS and
PPU-LMS).

From these simulation results, we can conclude
that:

• As expected, the NMSEs decreases when the
SNR increases, whatever the method we con-
sider.

• SPU-LMS gives more precise estimation than
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Figure 5: NMSEs vs iterations for differentP value
of PPU-LMS algorithm
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Figure 6: NMSEs vs iterations for the three adaptive
algorithms
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Figure 7: NMSEs vs SNR for the three adaptive algo-
rithms

PPU-LMS in terms of NMSEs, with difference
1-2 dB. Ordinary LMS algorithm gives the best
estimations, with difference2-3 dB in terms of
NMSEs compared to SPU-LMS and PPU-LMS,
whatever the value of SNR.

• The more we increaseQp, i.e. to reduce the
number of updated coefficients of estimated vec-
tor θ(p), the convergence rate of SPU-LMS algo-
rithm becomes slower.

• The more we increase the periodP of PPU-LMS
algorithm, i.e. to update all the coefficients of
estimated vectorθ(p) after several iterations, the
convergence rate becomes slower.

• Ordinary LMS algorithm converges2 times
faster than PPU-LMS and SPU-LMS. In con-
clusion, that itself converges much more rapidly
than CLMS.

6 Conclusion
In this paper, we have presented Levenberg-
Marquardt algorithm and Partial Update LMS algo-
rithms for identifying a nonlinear third-order Volterra-
PARAFAC models based on PARAFAC decomposi-
tion of its kernels considered as symmetric tensors.
The performance of these algorithms have been pre-
sented by means of computer simulations. The pro-
posed algorithms are able to provide a good iden-
tification of Volterra-PARAFAC coefficients. Then,
we presented a performance comparison between
Levenberg-Marquardt and Extended Kalman Filter
methods, in one hand, and between Partial Update
LMS and ordinary LMS, in other hand. In a future
work, robustness to noise, extension to higher-order
tensors, and a comparison of Volterra-Parafac models
with pruning Volterra models recently proposed will
be considered.
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